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Abstract--Particle dispersion and deposition in a horizontal turbulent tube flow have been studied with 
a Turbulent Diffusion Model. Dispersion and deposition are modelled as the combined process of 
turbulent diffusion and gravitational settling fluxes. The particle diffusion coefficient is expressed in terms 
of the fluid diffusivity, taking into account the inertial effect and the crossing trajectories effect. The 
analytical solution for the particle concentration in a one-dimensional problem between two horizontal 
plates is found, and is used to calculate the relative deposition between the top and the bottom wall. It 
is investigated how this relative deposition depends on the particle diameter, the height of the channel 
and the Froude number. The one-dimensional analytical solution is used to predict the two-dimensional 
deposition flux in a tube, and it is investigated how this depends on the particle diameter and the Froude 
number. The expression for the deposition flux contains the characteristic physical parameters of the 
deposition problem that have not been recognized in earlier work. © 1997 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

The importance o f  dispersion and deposit ion o f  particles has been recognized in industrial and 
environmental  applications as well as in science. Transpor t  o f  pollution in the a tmosphere  or in 
the oceans, t ranspor t  o f  sediment in rivers and oceans, inhalation o f  toxic dusts, deposit ion during 
microchip fabrication, air or  water cleaning, catalyst particles in riser flows and droplet deposition 
in annular  dispersed two-phase flows are some examples. Annular  dispersed flow is the prevailing 
flow regime during the product ion  o f  gas and in thermal cracking processes in furnace tubes. In 
all these examples one is interested in how particles or  droplets are t ransported and what  determines 
their deposit ion on some boundary .  

In this paper  we are concerned with one o f  these examples, namely a horizontal  annular  dispersed 
gas/liquid flow in a tube. In these flows, the core o f  turbulently flowing gas contains liquid in the 
form of  droplets with diameters between 10 and 1000 p m  (1 mm). The droplets are entrained f rom 
the liquid film, and can deposit  at various positions on the annular  film. Figure I gives a sketch 
o f  this entrainment/deposi t ion mechanism in a horizontal  annular  dispersed gas/liquid flow in a 
tube. It is one o f  the mechanisms that  have been proposed to explain the annular  character  o f  the 
film. Other  mechanisms that  have been proposed are wave spreading, secondary gas flow, and 
surface tension (Fukano  and Ousaka  1989; Laurinat  et al. 1985). 

Till now it is not  clear which mechanism, or which combinat ion  o f  mechanisms is/are responsible 
for the annular  character  o f  the film. Instead of  immediately solving the basic liquid film equations 
for conservat ion o f  mass and momentum,  where empirical correlations or simple models are needed 
for all the four  mentioned mechanisms (Fukano  and Ousaka 1989; Laurinat  et al. 1985), we study 
only the deposit ion mechanism, separately f rom the other  mechanisms. This should lead to an 
expression for the deposit ion flux with a wider range o f  applicability than the correlations that have 
been used so far. In the following we speak about  particles and not about  droplets, as in our  
analysis the behaviour  o f  droplets does not  differ f rom the behaviour  o f  solid, hard spherical 
particles. 
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In order to solve the basic liquid film equations for a horizontal annular dispersed gas/liquid 
flow, the flux of depositing particles at a certain circumferential angle in the tube has to be known 
(Fukano and Ousaka 1989; Laurinat et al. 1985). Except for very large particles (>200 ktm), for 
which the motion is totally dominated by gravity and the particle's initial entrainment velocity 
(Anderson and Russell 1970; James et al. 1987), there is at present no theoretical analysis of 
this deposition flux in a two-dimensional geometry. Anderson and Russell (1970) developed a 
semi-empirical expression to correlate deposition and entrainment fluxes, but only for the top half 
in the tube. The model used to derive this expression assumes that droplet deposition is caused 
by deterministic drop trajectories intersecting the liquid film, The work of James et al. (1987) is 
an extension of the work of Anderson and Russell (1970). In both approaches no effect of 
turbulence was taken into account because only very large particles were considered. Laurinat et al. 

(1985) proposed an empirical fit to a representative deposition flux profile measured by Anderson 
and Russell: 

RD(~b) = kD[1 + 10 exp(2(cos ~b-  1))], [1] 

where RD is the deposition flux, kD is a constant that has to be calculated from the entrainment 
of particles, and q~ is the angle around the tube circumference. Figure 2 gives a sketch of this 
correlation in units of kD. Deposition is the highest at the bottom and the lowest at the top. In 
all horizontal annular flow models up till now a correlation like [1] or even a more simple deposition 
flux, not depending on the circumferential tube angle, has been used. 

However, it is clear that the behaviour of RD(~b) must depend on the gas velocity. The difference 
between deposition at the bottom and deposition at the top is expected to decrease with increasing 
gas velocity. Unfortunately, correlation [1] does not depend on the characteristic physical 
parameters of the problem. Its applicability is restricted to conditions not far removed from those 
for which the constants have been determined. In this study we investigate whether or not a more 
generalized form of this equation can be derived using a turbulent diffusion model (Binder and 
Hanrat ty 1992). 

The history of the Turbulent Diffusion Model presented in this paper goes back to Taylor (1921) 
and to Friedlander and Johnstone (1957). Taylor (1921) introduced the concept of  Turbulent 
Diffusion in a study of  the spread of scalar properties like smoke, heat and soluble matter. 
Friedlander and Johnstone (1957) used this concept for modelling a two-phase flow with particles. 
They also introduced the "diffusion/flee-flight" concept (explained later) for particles depositing 
at a wall. In order to improve agreement with experimental data, different modifications of this 

Figure 1. The entrainment/deposition mechanism in a horizontal tube. 
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Figure 2. The deposition flux in a tube as a function of the circumferential angle in the tube. (~b = 0 is 
the bottom, ~b = + n is the top). 
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concept were proposed in the course of time: varying free-flight distance from the wall; modifying 
free-flight velocity; particle diffusivity unequal to eddy diffusivity; changing concentration 
boundary condition at the free-flight distance (Kallio and Reeks 1989). 

The most recent contribution in the field of particle deposition described in the framework of 
turbulent diffusion is the work of Binder and Hanratty (1992), which is the starting point of this 
article. They considered the dispersion and deposition of particles in a two-dimensional horizontal 
rectangular channel by a convection/diffusion model. The diffusion part of this model represents 
the influence of turbulence and the convection part represents the influence of gravity on the 
particles. Particles are emitted from an instantaneous point source at the bottom of the channel 
with some initial entrainment velocity and can deposit at either of the perfectly absorbing 
boundaries. The particle diffusivity and the particle deterministic fall velocity are taken to be 
functions of the time that a particle has been in the flow field. The resulting convection/diffusion 
equation and the equation for the time-dependent deterministic velocity of the particles are solved 
numerically. One of their conclusions is that two dimensionless groups determine the resulting 
concentration profiles: the ratio of the time scale of the particle to the time scale of the fluid, %/TL, 
and the Froude number based on the friction velocity, Fr*. rp is the particle relaxation time and 
TL is the integral fluid time scale. The Froude number is defined by Binder and Hanratty (1992) 
as (u*)2/gH, with u* the friction velocity, g the acceleration of gravity, and H the height of the 
channel. For small Fr* TL/rp the deposition flux is controlled by gravitational settling, whereas for 
large Fr* Te/~p it is controlled by the turbulence of the fluid. 

The main differences between the method used in this paper and the approach of Binder and 
Hanratty (1992) are two-fold. First, we assume the particle diffusion coefficient and the 
gravitational settling velocity to be stationary instead of time-dependent. This assumption has the 
great advantage that the one-dimensional problem can then be solved analytically, so that we find 
a general expression for the deposition flux independent of the exact quantitative modelling of the 
particle diffusion coefficient and the gravitational settling velocity. It furthermore has the advantage 
that an analytical two-dimensional deposition flux in a tube can be calculated which contains the 
relevant physical parameters of the problem that are hidden in generally used empirical correlations 
like [1]. Of course it has the disadvantage of not taking into account the fact that the particle 
deterministic velocity is generally time-dependent and that the particle diffusion coefficient is 
initially also time-dependent. Second, we explicitly include the inertial and crossing trajectories 
effects in the particle diffusion coefficient. Thus the particle diffusion coefficient is equal to the fluid 
diffusivity for zp/TL < 1, but smaller than the fluid diffusivity for rp/TL > 1. Binder and Hanratty 
(1992) assumed the particle diffusion coefficient to be equal to the fluid diffusivity. They did not 
consider at all the crossing trajectories effect. 
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The rest of this paper is organized as follows. First, we will give a definition of the problem 
under consideration, specify the assumptions on which our model is based, and introduce the 
relevant length and time scales in the problem. Thereafter, we will specify a time-dependent, 
one-dimensional convection/diffusion problem, solve the accompanying equations analytically and 
finally use the solution to calculate one- and two-dimensional deposition fluxes of particles. The 
two-dimensional deposition flux will be compared with the semi-empirical correlation of Laurinat 
[1]. At the end of this paper we will draw the most important conclusions of our analysis and discuss 
these. 

2. DEFINITION OF THE TURBULENT DIFFUSION PROBLEM 

Between two infinite horizontal plates particles are dispersed by turbulence and convected by 
gravity and they can deposit at the walls. The problem is sketched in figure 3. 

The streamwise turbulence is assumed to have little effect on the particle deposition at the walls, 
because the fluid mean velocity is dominant in the streamwise direction. It is assumed that particles 
can cross the boundary layers at the walls on their inertia. The radial fluctuating velocity becomes 
almost constant for y.u*/vf>50, so that we define the beginning of the boundary layer at 
y. u*/vf= 50. We study the time-dependent problem, with perfectly absorbing walls, and we consider 
two initial conditions: the initial condition at which all the particles are homogeneously distributed 
on a tube cross-section without having an initial radial velocity, and the initial condition of an 
instantaneous source at the bottom wall. Our aim is to predict from the Turbulent Diffusion Model 
the deposition flux of particles. 

In the Turbulent Diffusion Model we make the following assumptions. 

(1) Turbulent gas flow in a horizontal tube containing particles with a particle/fluid density 
ratio of the order of 1000 (simulating an air-water flow). 

(2) No liquid film at the wall. 
(3) Dilute particle suspension (volume fraction O(10 ~): one way coupling) without break-up 

and coalescence. 
(4) Uniform and axial average fluid velocity (plug flow), 
(5) Homogeneous turbulence up to the boundary layers, 
(6) Perfectly absorbing walls. 
(7) The particle mean free path (defined later) is larger than the thickness of the boundary layer 

(so that there is a free flight of particles through the boundary layer to the wall) and the particle 
mean free path is smaller than the tube diameter. 

(8) We assume that Fick's law is valid, so that particles are in local equilibrium with the 
surrounding fluid, and a diffusion equation can be applied. For  homogeneous turbulence this 
condition implies that the particle relaxation time must be much greater than the integral time scale 
of turbulence and much less than the particle diffusion time (Reeks 1983). The motion of the 
particles is then statistically similar to Brownian motion. These high inertia particles react slowly 
and with small amplitudes only on the large scale turbulent structures. Therefore they see the 
turbulent field more or less as a random field with little structure. 
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Figure 3. The diffusion/free-flight problem between two infinite horizontal plates. 
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Table 1. Length scales 

Tube diameter 
Eulerian eddy length scale 
Kolmogorov length scale 
Particle diameter 

5 x 10-2m 
5 x 10 -3 m 
O(100) ~tm 
10#m <dp < 200/~m 

(9) Stationary particle free fall velocity vg. 
(10) Particle diameters lie between 10 and 200 #m, so Brownian motion can be ignored and 

particle motion is not fully dominated by gravity. 

These assumptions will be discussed at the end of this paper. We note that the assumptions of 
homogeneous turbulence and uniform, axial fluid velocity are more or less justified by assumption 
(10). High inertia particles effectively see almost homogeneous turbulence (they do not respond 
much to gradients in the fluid r.m.s, velocity normal to the walls), and they will not respond much 
to variations in the mean flow of the fluid. 

Very important is a consideration of the relevant length and time scales in the problem. Table 1 
gives the orders of magnitude of the relevant length scales: the diameter of the tube; the typical 
Eulerian eddy length scale; the smallest scale of the turbulent structures (the Kolmogorov length 
scale) and the diameter of the particle. The Kolmogorov length scale 2K is calculated according 
t o  

& ~ [21 

where vf is the kinematic viscosity of the fluid, and E the kinetic energy dissipation, given by 

E = k . -~ .  [3] 

Velocity scale U is related to the friction velocity u* and is approximately equal to one tenth of 
the average fluid velocity. Length scale L is approximately one tenth of the diameter of the tube, 
and for a tube k ~ 0.01. 

The relevant time scales are the integral time scale TL of the fluid and the particle relaxation time 
based on Stokes drag, zp. The integral time scale TL of the fluid is given by 

TL = f [  (vi(t)V/(to)> el" 
0;2> - , ,  [41 

where v/is the fluctuating velocity of the fluid and to some initial time. In a tube flow, TL will depend 
on the spatial position, but as homogeneous turbulence is assumed, TL is taken to be constant. 
Approximately TL can be calculated by 

L 
TL ~ ~. [5] 

Of course there is in fact a whole range of time scales in turbulence. However, for the dispersion 
of particles the time scale TL of the most energetic, large eddies is assumed to be dominant. The 
particle relaxation time based on Stokes drag is equal to 

1 ~ P__e [6] 
Tp = 1"-8 Vf p f '  

with vf the kinematic viscosity of the fluid, and pp and pf the densities of, respectively, the particle 
and the fluid. For particle Reynolds numbers larger than one, the real relaxation time will be 
smaller due to the increased drag in the non-Stokes case. The ratio zo/TL is called the Stokes number 
S and can be interpreted as a measure of the influence of particle inertia on the dispersion of 
particles by fluid turbulence. Table 2 gives an overview of the orders of magnitude of the time scales 
Zp and TL. 
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We can distinguish three cases: the particle relaxation time is much smaller, of  the same order 
of magnitude, or much larger than the fluid integral time scale, leading to different responses on 
the turbulent fluctuations, different behaviour in the boundary layer, and different deposition 
fluxes. For  particle relaxation times much smaller than the fluid integral time scale (S<< 1), particles 
precisely follow the velocity fluctuations of  the fluid, the deposition is delayed by the boundary 
layer and the deposition flux is low all around the tube wall. As shown in table 2, in our case this 
holds for the 10 pm particles. For  particle relaxation times of the same order of  magnitude as the 
fluid integral time scale (S ~ 1), particles follow the turbulent fluctuations quite well, the effect of  
the boundary layer on the deposition is limited, and the deposition flux due to turbulence is high 
all around the tube wall. For  particle relaxation times much larger than the fluid integral time scale 
(S >> 1), the response to the turbulent fluctuations is slow, and the particles effectively see a randomly 
fluctuating velocity field. The deposition is not affected by the boundary layer, and the deposition 
flux is large at the bot tom and small at the top, due to gravity. This is expected to hold for the 
200/~m particles. 

Annular dispersed gas/liquid flows in industrial processes often operate under different 
conditions from laboratory air-water flows. Pressures are often much higher as well as the physical 
dimensions of the tube. In order to know to what extent there is a dynamic similarity between a 
laboratory experiment and a field experiment, it is necessary to consider the characteristic 
dimensionless parameters. Whereas for an isothermal one-phase flow there is only one 
characteristic parameter,  the Reynolds number, for two-phase flows there are five similarity 
parameters which determine a general isothermal two-phase flow problem (Chesters 1975): the 
Reynolds number, the Froude number, the Weber number, the density ratio and the viscosity ratio. 
There is a dynamic similarity between two gas/liquid flows if these five similarity parameters are 
the same, and if there is a geometrical similarity of the imposed boundary conditions. Table 3 gives 
the orders of  magnitude of these five similarity parameters for the problem that we consider. We 
will assume that we have water droplets in a turbulent air flow. For calculating Reynolds and 
Froude numbers we have used a 45 m/s gas velocity and a tube diameter of 5 × 10 2 m. In the 
Weber number we have used the same gas velocity, but as length scale the typical diameter of a 
droplet, 100/~m, in order to have an estimate for the ratio of turbulent stress and surface tension. 
The surface tension between water and air is 73 × 10 3 N/m. Break-up of a fluid particle can only 
be expected for Weber numbers much larger than one. 

3. MATHEMATICAL F O R M U L A T I O N  OF THE PROBLEM 

The concept of  a diffusion equation makes sense physically when the relevant length scale over 
which the diffusion process is considered (here the height of  the channel) is larger than the particle 
mean free path (defined in homogeneous turbulence), and the time of observation is larger than 
the mean free time (TL). Following Swailes and Reeks (1994) we can define a particle mean free 
path in a turbulent flow as the distance a particle travels in a time over which its motion is 
correlated. The particle mean free path l is then defined as 

l =  ~ T p ,  [7] 

with (v~'-) is the particle mean square velocity and Tp = TL(I + S) the particle integral time scale. 
With increasing particle relaxation time, the particle r.m.s, velocity decreases, but the correlation 
time of the particle velocity increases more than the particle r.m.s, velocity decreases. Figure 4 gives 
the ratio between tube diameter and mean free path, H/l, as a function of the particle diameter 
and for two different Froude numbers. 

Table 2. Time scales 
Integral fluid time scale O(10 3)s 
Particle relaxation time (d~ = 10 ~m) O(10 -4) s 
Particle relaxation time (dp = 200/~m) O(10 -t) s 

Table 3. Orders of magnitude of the two-phase flow 
similarity parameters for our problem 

Reynolds number O(105 ) 
Froude number O(103) 
Weber number O(1) 
Density ratio O(103 ) 
Viscosity ratio O(102 ) 
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Figure 4. Ratio between tube diameter and particle mean free path as a function of particle diameter for 
Fr* = 4.6 and Fr* = 14.9 (5 × 10 -2 m tube diameter). 

Even for the largest particles that we use in our calculations, the 200 pm particles, this ratio is 
still larger than one, which supports assumption (7) in our Turbulent Diffusion Problem. In the 
limit of very small particles, the mean free path is assumed to be determined by the Eulerian integral 
length scale, which is 0.11 of the tube diameter. H/l  is then approximately 9. In the limit of  very 
large particles, the mean free path goes to infinity, and HI1 goes to 0. The particle mean free path 
increases with increasing Froude number. 

In inhomogeneous turbulence the gradient diffusion model, strictly speaking, is not valid unless 
• ~ = vp(u*)2/vr<<3 (Reeks 1983). For  larger particle relaxation times than this limit, turbophoresis 
becomes important. Turbophoresis is the effect that in inhomogeneous turbulence particles migrate 
from a region of high turbulent velocity fluctuations to a region of  low velocity fluctuations (Reeks 
1983). We will, however, neglect it in our model, because we have assumed homogeneous 
turbulence. 

As we have defined the physical problem and considered the relevant length and time scales, we 
can now derive a mathematical formulation of the problem. A time-dependent convection/diffusion 
equation in one spatial dimension is generally written as 

OC(y, t) ,~C(y, t) ~2C(y,  t) + vo , [81 
~t - Do ~y2 ~y 

where C(y,  t) is the particle concentration as a function of the spatial position y and time t. Dp 
is the particle diffusion coefficient and vg = g'~p the gravitational settling velocity of  the particle. 
The first term on the right-hand side is the diffusive term due to the influence of turbulence on 
the particles, the second term is the convective term due to the influence of gravity on the particles. 
Following Binder and Hanrat ty (1992) we make variables dimensionless according to 

y+ ~ Y ;  t+ tu* Dp , v+ v C+ Cu* 
--* ---H-; D;  ~ u-g-HH" ~ u --~; -~ R--~-' [9] 

w h e r e  RE iS the entrainment flux of particles and u* is the friction velocity. The friction velocity 
is calculated by using the Blasius correlation for a smooth tube 

Cr = 0.0791-Ref °25, [10] 

where Cr is the friction coefficient, and Ref the fluid Reynolds number. From the friction coefficient 
the wall shear stress Ts is calculated as 

1 pf I ~ C r ,  [l 1] 
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where VG is the average gas velocity in the tube. The wall shear stress is related to the friction 
velocity u* by 

u* = z~. [12] 

The one-dimensional convection/diffusion equation for the concentration of particles C + can then 
be written in the dimensionless form 

1 ~?C + 

D~ Ot + 

where the Peclet number P is defined by 

p: = gzp. H 
D p  " 

#2C+ ~C + 
- ¢ 3 ( v + ) :  + P - - '  [ 13 ]  . c?y + 

[14] 

The Peclet number is the ratio of the convection term due to gravitational settling and the diffusion 
term due to turbulent diffusion. For Peclet numbers much smaller than one, turbulent diffusion 
is dominant, whereas for Peclet numbers much larger than one, gravitational settling becomes 
dominant. H is the height between the plates. We model the particle diffusion coefficient Dp by 
relating it to the fluid diffusivity Df by 

Dp = 7inert7 ..... Dr, [15] 

where the fluid diffusivity is given by 

Dr = ~v((O)v((t) > dt  ~ (v;  2 e -rL dt  = ~v;2)TL [16] 
0 ,do 

(Taylor 1921). The fluid mean square velocity (v(2) can be approximated by (0.7-u*) 2 in the part 
of the tube where turbulence is considered to be homogeneous. From figure 15 in Uijttewaal and 
Oliemans (1996) it can be concluded that, in the absence of gravity, the ratio of particle and fluid 
diffusivity is governed by the ratio of particle relaxation time and fluid integral time scale. From 
this figure the inertial coefficient 7+ .... can then be estimated as 

1 
~,, .... - [17 ]  

I + T -  ~ 

Physically it corresponds to a decreasing response of particles on the fluid turbulence (in a wall 
bounded flow) if zp > TL. In the presence of a gravity field a crossing trajectories effect generally 
has to be taken into account according to Csanady (1963). A particle falling through an eddy loses 
its velocity correlation more rapidly than a fluid element. Thus it sees a fluctuating velocity field 
that varies more rapidly in time than a fluid element. The velocity correlation of a fluid element 
is determined only by the decay of an eddy. The result is that the crossing trajectories effect leads 
to a decreased particle diffusivity. It is determined by the ratio between the fluid integral time scale 
TL and the time spent by a particle within an eddy, L/vg with L the Eulerian eddy length scale and 
vg = gZp the gravitational settling velocity. The crossing trajectories coefficient 7 ..... is then given by 

1 
..... = [181 

From this formula it can be calculated that for 200/~m particles the crossing trajectories effect can 
reduce particle diffusivity by about 10% for an average gas velocity of 32 m/s (Fr* = 4.6), and by 
less than 5% for 62 m/s ( F r * =  14.9). These gas velocities were chosen because for both gas 
velocities measurements have been done by Paras and Karabelas (1991) in a 5 cm tube. Figure 5 



T U R B U L E N T  D I F F U S I O N  M O D E L  OF D I S P E R S I O N  A N D  D E P O S I T I O N  63 

gives both the inertial coefficient and the crossing trajectories coefficient as a function of particle 
diameter for Fr* -- 4.6 and Fr* = 14.9. The inertial effect is very important for the particles sizes 
under consideration, but the crossing trajectories effect is only significant for particles larger than 
about 150 #m. Diffusion coefficient [15] differs from the diffusion coefficient that was used by 
Binder and Hanratty (1992). The latter assume the particle diffusivity to be equal to the diffusivity 
of the fluid. This assumption is based on an experiment by Vames and Hanratty (1988). However, 
Vames and Hanratty only measured the ratio of particle and fluid diffusivity for Stokes numbers 
(zp/TL) not larger than 2, whereas particles larger than 50 #m in an annular flow system have Stokes 
numbers significantly larger than 2 (see table 4 later). As Uijttewaal and Oliemans (1996) calculated 
the ratio of dispersion coefficients for Stokes numbers between 0.1 and 500, we use the results of 
their calculation to model the particle dispersion coefficient. This implies that the particle diffusion 
coefficient [15] decreases with increasing Stokes number for S > 1. 

Because the particle mean free path is larger than the thickness of the boundary layer, a 
convection/diffusion equation is no longer valid for the particle behaviour in the boundary layer. 
It is assumed that particles are projected towards the wall at the beginning of the boundary layer, 
leading to a free-flight flux v. C, where v has the dimensions of a velocity. The free-flight flux is 
then approximated by 

v.C= C.vp(c) dr, [19] 
0 

where p(v) is the velocity distribution at the point from which the particles are projected in the 
direction of the wall. Integration is performed only over the particle velocities directed towards 
the wall. Following Binder and Hanratty (1992), p(v) is assumed to be Gaussian. With this 
assumption it follows that 

1 2 ,2 v.C=~ q~,/~; >.c, [20] 

so that the free-flight velocity v is equal to 

1 v=~  ). [21] 
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Figure 5. The inertial and crossing trajectories coefficients as a function o f  particle diameter For Fr*  = 4.6 
and Fr* = 14.9. 
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The particle mean square velocity is calculated from the ratio of velocity fluctuations between 
particle and fluid given in Hinze (1975) (chapter 5.7) in which we have substituted the large density 
ratio between particle and fluid, leading to 

(Vp 2) _ 1 [22] 
( v ; : )  1 + S" 

Strictly speaking, the expression given by Hinze is no longer valid for large density ratios due to 
the possible crossing trajectories effect. However, in our analysis of the crossing trajectories effect 
it was shown that the effect is rather small for particle sizes under consideration. The relation [22] 
is also used by Swailes and Reeks (1994). At the beginning of the boundary layers x/(v(25 -- 0.9. u*. 
Then it follows from [21] and [22] that 

"=5,4 x/1 +s 

Binder and Hanrat ty (1992) used the following empirical approximation: 

(t,;-') 1 
(t'r'2) - ///0'7rv\ [241 

1+\ TL) 

For Stokes relaxation time, this expression reduces to 

(Vp 2) _ 1 [251 
(v; 2) 1 + 0.7.S' 

havig_g_the same form as [22]. They calculated the fluid r.m.s, velocity near the boundaries as 
x/(v(:)/'"" = 0,9.u*, as we did. 

We now derive the boundary conditions by applying conservation of mass at the beginning of 
the boundary layer: the diffusive plus the gravitational flux towards the boundary layer 
(Dp(OC)/(t3y) + vgC) must be equal to the free-flight plus the gravitational flux from the boundary 
layer to the wall (vC + vgC). Assuming that the boundary layer is thin enough to apply this 
condition exactly on the wall, we find the diffusion free-flight boundary condition (Binder and 
Hanratty 1992) at the bottom wall (y+ = 0): 

~C~ - v+ C +. [26] Dp ~y+ 

At the top wall (y+ = 1), we have 

OC+ - v+C +. [27]  -- Dp c3y + 

A more theoretical discussion and justification of this type of boundary condition is given in Morse 
and Feshbach (1953) chapter 2.4 (subsection on Boundary Conditions). We remark that the ratio 
Dp/v is of the order of the particle mean free path. Because the particle mean free path is large 
compared to the length scale characterizing the variation in the particle concentration, dC/~y, there 
can be a finite concentration at the wall. For  particles with S << 1 the particle mean free path vanishes 
at the wall, leading to the boundary condition which normally represents perfect absorption, C = 0. 
To close the one-dimensional model, we consider two initial conditions. The first initial condition 
is a uniform concentration: 

C+(t + = 0)  = Co = 1. [28]  

The second initial condition is a delta source at the bottom wall: 

C+(t + = O) = 6(y+). [29] 

Other initial conditions can be used without problems. The initial source at the bottom is the initial 
condition that was considered by Binder and Hanrat ty (1992). 
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The mathematical formulation of the problem now consists of  [13] with boundary conditions 
[26] and [27] and initial condition [28] or [29]. 

4. ANALYTICAL SOLUTION OF THE ONE-DIMENSIONAL PROBLEM 

Equation (13) with boundary conditions [26] and [27] and initial condition [28] or [29] now can 
be solved analytically (by separation of variables) leading to a series solution for C+(y +, t+): 

E 1 ] C+(y +, t +) = exp - ~  Py+ L 7.[c°s(b-Y +) + ft. sin(b.Y+)]exp(-k2.D~t+) • 
n=O 

[301 

The eigenvalues k. are determined by the boundary conditions. We have defined the eigenvalues 
k. in terms of b.: 

(1 )2 
k ~ : = b  2 +  ~ P  , [31] 

where b, then satisfies the transcendental equation 

22b. 
tan b. - (a 2 _ 22 ) + b2. [32] 

2 is the dimensionless free-flight/diffusion ratio equal to vH/Dp. 7,, is used to satisfy the initial 
condition, and is given by 

7. "[~C+(t = 0)e""+(c°s b"y+ + fl" sin b.y +) dy + [33] 
= S0te2""+(cos b.y + + ft. sin b.y+) 2 dy + 

7. can be solved analytically. For  C+(t = O)= 6(y +) the numerator in [33] is equal to 1. 
Furthermore, we have defined 

1 
a: = - ~  P, [34] 

and 

vH 1 

f t . : -  D--~ + 2 p 
b, 

[35] 

Table 4 gives the properties of  particles that are used in the Turbulent Diffusion Model. The first 
values given in each row are at Vc = 32 m/s (Fr* = 4.6), the second values are given at Iio = 62 m/s 
(Fr* = 14.9). Table 5 gives the properties of  the fluid that are used in the Turbulent Diffusion 
Model. Rer* = u*H/vf and Fr* = (u*)2/gH. 

The solution C+(y +, t +) given by [30] depends on three physical parameters: the Peclet number 
P, the dimensionless free-flight/diffusion ratio vH/Dp (determining the boundary conditions), and 
the initial condition C+(t = O)= Co. In figures 6 and 7 we have plotted the one-dimensional 
concentration profiles for 50 and 100/~m particles and Fr* = 14.9 at different distances travelled 
downstream. The initial condition is the uniform concentration. If it is assumed that droplets travel 
axially at a constant velocity, this distance travelled downstream is easily found by multiplying the 
time by the gas velocity. Convergence of  the series in [30] is achieved by taking 100 terms into 
account and calculating the concentration in a simple F O R T R A N  program. The smaller the value 
of  the time t, the more terms are needed in the series. 

For  the 50/~m particles the turbulent diffusion is relatively large, leading to a positive 
concentration gradient at the bottom wall. As a result of this deposition, due to turbulence the 
maximum in the concentration profile is above the bottom wall. Figure 6 shows that it takes more 
than 600 channel diameters travelled downstream before all the particles are deposited. A small 
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Table  4. Proper t ies  of  the part icles  tha t  are used in the Turbu len t  Diffusion Model .  F i r s t  values  are for 32 m/s  gas  veloci ty 
(Fr* = 4.6), second values are for 62 m/s  gas  veloci ty  (Fr* = 14.9) 

dp (#m)  zp (s) z + Dp (m2/s) ? ..... 5'~ .... vg (m/s) v (m/s) P S H/I 

l0  3.3 x 10 -4 44 1.6 x 10 -3 0.91 l 3.2 x 10 -3 0.49 0.4 0.2 8.7 
142 2.4 x 10 -7 0.84 1 0.82 0.1 0.4 8.4 

50 8.25 x 10 3 1092 7.0 x 10 -4 0.40 1 8.1 x 10 ̀ 2 0.21 5.8 5.2 5.1 
3538 8.7 x 10 4 0.30 1 0.29 4.7 10.2 4.1 

100 0.033 4370 3.6 x 10 4 0.22 0.99 0.32 0.11 42 21 2.9 
14.150 4.3 x 10 4 0.15 1 0.15 38 41 2.2 

200 0.13 17.200 1.8 x 10 4 0.11 0.93 1.27 0.06 354 82 1.7 
55.700 2.3 x 10 4 0.08 0.98 0.08 277 160 1.3 

Table  5. Proper t ies  of  the fluid tha t  are used in the Turbu len t  Diffusion Mode l  

V~ (m/s) Re~ Re~' Fr* TL (s) u* (m/s) Of (m2/s) 

32 94.118 4412 4.6 1.6 x 10 3 1.5 1.76 x 10 -3 
62 182.353 7941 14.9 8.1 x 10 -4 2.7 2.9 x 10 _3 

amount of the particles deposit at the top wall. For I00/~m particles the relative importance of 
turbulent diffusion is much less. The maximum in the concentration profile therefore lies much 
closer to the bottom wall than for 50/~m particles, as is seen in figure 7. This figure also shows 
that, although the initial distribution is uniform, the concentration profiles for the 100 #m particles 
show that the particles very rapidly fall to the bottom part of the channel and there is no deposition 
at the top of the channel. Within 20 channel diameters downstream all the particles are deposited 
at the bottom wall. 

Figures 8 and 9 give the concentration profiles for the delta source at the bottom as the initial 
particle distribution. Comparison of figures 6 and 7 with figures 8 and 9 shows that for the delta 
source at the bottom it takes less time before all the particles are deposited than for the uniform 
initial distribution. Furthermore, almost no particles deposit at the top wall whereas in the case 
of the uniform initial distribution there are particles depositing at the top wall. The concentration 
profiles become independent of the initial condition after a certain time. This is, of course, what 
we expect. 

The deposition flux RD is given by the sum (for the bottom wall) or the difference (for the top 
wall) of the free-flight flux and the gravitational settling flux: 

RD = (v ++_ v~)C. [36] 
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Figure 6. Concentration profiles at different distances travelled downstream (expressed in the number of 
channel heights) for 50/ lm particles (S = ]0,2) and for Fr* = 14.9; uniform initial distribution, 
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Figure 7. Concentration profiles at different distances travelled downstream (expressed in the number of 
channel heights) for 100/~m particles (S = 41) and for Fr* = 14.9; uniform initial distribution. 

For vg > v, the deposition flux at the top is equal to 0. The ratio Dro~(t +) of deposition fluxes at 
the top and at the bottom then follows straight from the solution for the concentration and [36]: 

oc 

7,(cos(b, )  + / 3 ,  sin(b,))exp(-k2,D; t ÷ ) 

Orel(t+) = v -- Vg exp]- 1 p ] "  o [37] 

v + Vg L z ~ 7,, exp(-k2.Dp t+) 
n = 0  

O n l y  for  free-fl ight  veloci t ies  larger  t h a n  the g rav i t a t i ona l  se t t l ing veloci ty c an  par t ic les  depos i t  at  
the top  wall.  I n  the  l imit  t ~ oo, w h e n  the ini t ia l  c o n d i t i o n  does n o t  affect the so lu t i on  a n y m o r e ,  
D,,~ is equa l  to 

D,~,= v+V-~:expI-1P 1" [38] 
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Figure 8. Concentration profiles at different distances travelled downstream (expressed in the number of 
channel heights) for 50 pm particles (S = 10.2) and for Fr* = 14.9; initial delta source at the bottom. 
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Figure 9. Concentration profiles at different distances travelled downstream (expressed in the number of 
channel heights) for 50/~m particles (S = 41) and for Fr* = 14.9; initial delta source at the bottom. 

In figure 10 we have plotted this Dr~ as a function of the height between the horizontal plates and 
the particle diameter. Particles larger than 70/~m are, in the absence of any initial velocity, not 
able to reach the top wall. 10 #m particles (the minimum size of particles in this model) deposit 
in almost equal amounts at the top and at the bottom. Between 10 and 70/~m the relative deposition 
quickly drops to zero. 

How does the relative deposition change with increasing Froude number? In figure 11 we have 
plotted the relative deposition of particles in the cases of  Fr* = 4.6 and Fr* = 14.9 and a channel 
height of  5 x 10 -2m. Note that the curve for Fr* = 14.9 lies only slightly above the one 
for Fr* = 4.6. This is due to two effects which compensate each other to a certain extent. For  a 
higher gas velocity, and therefore a higher Froude number, the correlation time TL decreases, 
leading to a larger Stokes number, and a decreasing particle diffusivity as a result of the inertia 
effect. On the other hand, the particle diffusivity increases due to the increasing fluid diffusivity. 
The latter increases more than the former decreases, so that, according to [15], the net particle 
diffusivity increases slightly going to higher Froude numbers. We see that for the whole range 
of  Fr* numbers between 4.6 and 14.9 the relative deposition rapidly drops to zero between 10 
and 70/~m. 
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Relative1 ~ 
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Figure 10. Relative deposition of particles between the top and the bottom of the channel as a function 
of particle diameter and height of the channel, 
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Figure 11. Comparison between the relative deposition of particles between the top and the bottom of 
the channel as a function of the particle diameter for Fr* = 4.6 and Fr* = 14.9. 

5. E X T E N S I O N  TO A T W O - D I M E N S I O N A L  D E P O S I T I O N  F L U X  A N D  C O M P A R I S O N  
W I T H  A S E M I - E M P I R I C A L  C O R R E L A T I O N  

Paras  and Karabe las  (1991) found in their experiment  with a horizontal  annula r  dispersed 
gas/l iquid flow in a 5 cm tube that  the concentra t ion o f  particles on a horizontal  line in the 
cross-section o f  the tube is more  or less constant .  Using this exper imental  result as an extra  
assumpt ion ,  our  one-dimensional  model  then can be extended to a quasi two-dimensional  model  
by subst i tut ing 

4 , = ~ (1  - c o s  4 , )  

in R~(~b, t +) = (v + + v+)C+(y +, t+), where C+(y  +, t +) is given in [30]. d, is the d iameter  o f  the tube. 
Fur the rmore ,  we substitute Vg ~ vg + cos ~b in the expression for  the deposit ion flux. This leads to 

[' ] R~(~b, t +) = [v + + vg cos ~b]exp ~ P(cos ~b - 1] 

) (l )] 
" ,~  7. cos ~ b . ( 1 - c o s q ~ )  + f l .  sin ~ b . ( 1 - c o s ~ b )  exp(-k2.D+ t+ ). 
.=0 L \ 

[39] 

As we have assumed turbulence to be homogeneous ,  the free-flight velocity is independent  o f  ~b. 
The  series in expression [39] is not  o f  a genuine physical origin for  our  two-dimensional  case. As 
can be seen in figure 6, the m a x i m u m  in the concentra t ion  profile in the one-dimensional  case is 
above  the b o t t o m  wall. Therefore,  the result [39] leads to a local m in imum at 4~ - 0  and local 
m a x i m a  at ~b values slightly larger than 0. This is an artificial effect. As the series term in [39] is 
a te rm depending on the initial en t ra inment  condit ion (via 7,), we p ropose  to write it for  the 
s ta t ionary  case as some unknown constant  CE, to be determined by the initial en t ra inment  
condit ion.  CE will generally differ for  different particle relaxation times. The  final result for  the 
two-dimensional  deposi t ion flux that  follows f rom our  analysis can then be writ ten as 

1 Ro(~, Zo)= ko(~b, % ) - e x p ( ~  P(cos ~b-  1)),  [40] 
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where the local deposition constant kD(~, "t'p) is defined as 

kD(q~, zp) = CE(Zp)'(V+Vg COS ~b), [41] 

having the dimension of velocity. The constant CE can be determined from the fact that in a fully 
developed annular gas/liquid flow the total entrainment flux equals the total deposition flux: 

I fo RE(q~, %) d~b = RD(~b, %) dq~. [421 

From [40], [41] and [42] it follows that 

cE(rp) = "f°~RE(¢' %) dq~ 

~2(v + v~ cos ~b)exp ~ P(cos q5 - 1) d~b 

[43] 

In figure 12 we have plotted the deposition flux of [40] normalized by cE for two Froude numbers 
as a function of the circumferential tube angle for four different particle sizes: 10, 50, 100 and 
200 pm particles. Although we have plotted these curves in one figure, we recall that c~ is generally 
different for different particle relaxation times. This means that for each particle relaxation time 
the curves in figure 12 have to be multiplied by a different multiplication factor cE with respect 
to the horizontal axis. 

Figure 12 shows that 50 #m particles are just able to deposit up to the top of the tube, 100 #m 
particles can only deposit up to one third of the tube wall circumference, and 200 #m particles 
deposit up to one sixth of the tube wall circumference. The smaller the particle size, the broader 
the curve for the deposition flux. This is easily explained by the fact that as the influence of gravity 
becomes less, particles deposit more and more uniformly around the tube circumference• The width 
(defined by the angle at which the deposition flux is at 1/e of its value at the bottom) of the 
deposition curves is mainly determined by ¼P. The width decreases if the Peeler number increases• 
The Peclet number increases if the acceleration of gravity and/or the radius of the tube increases, 
and/or if the particle diffusion coefficient decreases. In the limit P --, 0 the influence of gravity is 
negligible and RD (~b) becomes a constant independent of ~b. In the limit P --, oe the influence of 
gravity is infinite, and there can only be deposition at the bottom of the tube, at least in the 
framework of our model, where particles do not have an initial entrainment velocity. 

The influence of the Froude number on the deposition flux is also shown in this figure. The 
smaller the size of the particle, the larger the influence of a change in the Froude number• Again, 
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Figure 12. Deposition flux normalized by cE(~p) vs circumferential tube angle for four different particle 
sizes and for Fr* = 4.6 and Fr* = 14.9; the Stokes number S is given as well for the particles. 
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this is an effect which can be expected on the basis of the fact that for smaller particles the influence 
of turbulent diffusion is relatively large in comparison with the influence of gravity. For a larger 
Froude number the deposition flux at a certain ¢ is larger. For the 10/~m particles it is almost 
twice as much in figure 12, but this effect decreases with increasing particle relaxation time. For 
the 100 and 200/~m particles this effect is very little. This is due to the fact that for larger gas 
velocities the effect of an increasing fluid diffusion coefficient is partly compensated by a decreasing 
inertial coefficient (see table 4). Analysis of [40] thus shows that its behaviour is, at least 
qualitatively, in accordance with what is physically expected. 

We recall the semi-empirical correlation given in Laurinat et al. (1985): 

RD(~b) = kD[1 q- 10 exp(Z(cos ¢ -- 1))]. [44] 

In this expression ko is a constant (with the dimensions of velocity) that has to be calculated from 
the entrainment flux of particles RE(C) according to 

kD = ~ [45] 
j0"Cw d0" 

Cw is the concentration at the wall at a position ¢. Correlation [44] is the result of deposition of 
particles with different particle sizes. We can write a general correlation of the form [44] as 

RD(¢) = ko[1 + A exp(B(cos ¢ - 1))], [46] 

and a general correlation of the form [40] as 

RD(¢) = ko(q~)exp(B(cos ¢ - 1)) -- CEA(¢)exp(B(cos (b - 1)). [47] 

Let us now compare our result [47] with the semi-empirical correlation [46]. We note three 
differences. The first difference in form between [46] and [47] is an offset constant which takes the 
value ko in [46]. The physical interpretation of this offset constant can be the deposition of particles 
with S<< 1. These particles are not influenced by gravity and therefore deposit uniformly around 
the circumference of the tube. A second difference is that ko is independent of ¢ in [46], whereas 
our analysis indicates that it should depend on ¢. Our result is in accordance with recent work 
by Williams et al. (1996), who have assumed that the local deposition constant ko is C-dependent: 

Cw(¢) [v + v~ cos ¢]. [48] ko(¢) = c .  

Here, CB is the bulk concentration and Cw is the wall concentration, which generally depends on 
¢. From our analysis it follows that Cw is proportional to exp (¼P(cos ¢ - 1)). 

A(¢) in [47] is defined as 

A(¢) = v + vg cos 4). [49] 

A third difference is the explicit form of B in [47] that follows from our analysis. B is found to 
be determined by the ratio between convection and diffusion terms according to 

1 
B: = ~ P. [50] 

Instead of the empirical constants for A and B in [44], we have found with [49] and [50] how they 
depend on the relevant physical parameters in the problem. It should be noted again that Laurinat's 
correlation is the result of integrating over all particle relaxation times present in a horizontal 
annular dispersed gas/liquid flow. If the distribution over particle relaxation times is given as n(zp), 
we can use it in order to calculate from our result [40] the average deposition flux according to 

( R o ( ~ b ) >  = S R D ( ¢ ,  Tp)n(~'p) d~p. [51] 

The expression [40] derived for the two-dimensional deposition flux is an expression for the 
deposition flux on the one hand depending on experimental information of the entrainment process 
(via CE), but on the other hand explicitly containing the relevant physical parameters of the 
deposition problem (via (v + v~ cos ¢) and P). 
IJMF 24/1--C 
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The physical variables which totally determine the solution of the Turbulent Diffusion Model 
[40] are: acceleration of gravity, particle relaxation time, integral fluid time scale, tube diameter, 
mean square fluid velocity and the Eulerian length scale. Particle time scale, integral fluid time scale 
and fluid mean square velocity are in fact microscopic, dependent parameters. As we have neglected 
the influence of the liquid film in our problem, the total solution depends, for a given particle/fluid 
density ratio, on the following macroscopic parameters: acceleration of gravity, tube diameter and 
average gas velocity. The Froude number is the characteristic dimensionless number that can be 
constructed from these three parameters. The distribution of particle relaxation times is determined 
by the Froude number and the superficial liquid velocity, in a way which is yet unknown. It is only 
known qualitatively that with increasing gas velocity the particle mean diameter decreases rapidly, 
whereas with increasing superficial liquid velocity the particle diameter decreases at low gas 
velocities, but increases at high gas velocities (Hay et al. 1996). The influence of the Froude number 
on the particle size distribution is dominant over the influence of the superficial liquid velocity. 

Now, we would like to transform 1401 into an equation which only contains the macroscopic, 
independent variables: acceleration of gravity, average gas velocity and tube diameter. The Eulerian 
length scale can be estimated from the tube diameter, and the fluid mean square velocity from the 
friction velocity. From the resulting parameters rpr TL, u*, g, d,, two dimensionless groups can be 
formed: S = s,/TL and Fr* = (u*)2/gd,. They also determine the Peclet number P and the 
dimensionless ratio between free-flight velocity and diffusivity (vd,/D,) that occur in the solution 
[30]. These groups were already recognized by Binder and Hanratty (1992). It follows from [ 14]-[ 171 
that, neglecting the crossing trajectories effect, the Peclet number is written as 

p _ 2.OSJiG 
Fr* 

if we assume that (v;‘) = (O.~.U*)~. 
The Eulerian length scale is determined by the tube diameter according to 

L 'd y=j I. 

The fluid integral time scale can be estimated from the gas velocity: 

[521 

[531 

The fluid Reynolds number determines the friction coefficient, and from this the friction velocity 
can be calculated. The friction velocity enables us to calculate the fluid mean square velocity: 

,+;I) = (0 7.U*)2=0.02 4 

0 

e”4v7:4 
Vi 

G I 1551 

where vf is the kinematic viscosity of the fluid and Vc the average gas velocity. Substituting [54] 
and [55] into [16], the diffusion coefficient of the fluid can be written as 

Dr = 0 (J2.v”4p4v3:4. 
f t G 1561 

Substituting [53]-[55] and [22] into [49] and [50] gives A and B in terms of macroscopic variables. 
Only the particle relaxation time is still present in these expressions. 

0 
8 

2 V’d” 

A( V,, rfp, 4) = gr, cos f$ + 0.07 I [571 

J zp. 
l+ d t 

[5gl 
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6. CONCLUDING REMARKS 

6.1. Summary 

A Turbulent Diffusion Model has been used to predict the particle deposition flux in a horizontal 
turbulent tube flow. The new aspects of  this Turbulent Diffusion Model are that we have found 
a one-dimensional analytical solution which can be used to calculate an approximate 
two-dimensional solution for the deposition flux. We have used a particle diffusion coefficient with 
an inertial and a crossing trajectories effect and we have calculated these effects quantitatively. 

For  the one-dimensional case, we have used the analytical solution for the particle concentration 
to calculate the relative deposition between the top and the bottom wall. We have investigated how 
this relative deposition depends on the tube diameter, the particle size and the Froude number. 
For  a certain tube diameter, the curve of the relative deposition for Fr* = 14.9 lies only slightly 
above the one for Fr* = 4.6. This is due to two partly compensating effects: a decreasing inertial 
coefficient and an increasing fluid diffusivity. The latter increases more than the former decreases, 
so that the total particle diffusivity increases slightly with increasing gas velocity. We also conclude 
that for the whole range of Fr* numbers between 4.6 and 14.9 the relative deposition flux rapidly 
drops from one to zero between particle diameters 10 and 70/~m. 

Subsequently, the analytical solution for the particle concentration to the one-dimensional 
problem is used to calculate the deposition flux in a tube flow. The physical parameters are found 
which determine the form of the deposition flux. These were not apparent in the semi-empirical 
correlation of Laurinat [1]. The general form of the deposition flux that we have derived can be 
expressed as 

RD(VG, Tp, 4')  = CE(Tp)'A(V6, "Co, 4 ' ) . e x p ( B ( V ~ ,  zp) (cos  4 ' - -  1)). [59] 

Here, CE is determined by the entrainment flux, A is equal to the sum of gravitational settling 
velocity and free-flight velocity to the wall, and B = ¼P, with P the dimensionless number 
characterizing the convection/diffusion ratio. P can be expressed in terms of  the Froude number 
and the Stokes number. If  the specific particle size distribution is known, the average deposition 
flux can be found by integrating [59] over the particle relaxation time. Correlations which have 
been developed up till now did not contain the relevant physical parameters of the problem. The 
4' dependency in A and the dependency on the gas velocity in A and B, which result from our 
analysis, have not been quantified in previous work. The influence of the Froude number on the 
deposition flux for four different particle sizes has been investigated. The maximum circumferential 
angle in the tube up to which particles of  a certain size can deposit is predicted for an air-water 
annular flow in a tube with a diameter of 5 x 10 -2 m. Particles larger than about 70/~m are not 
able to reach the top of  the tube without having an initial radial entrainment velocity. The influence 
of the crossing trajectories effect on the particle diffusion coefficient has been calculated, and it is 
found that only for particles larger than about 150 #m can the effect become significant in a 
horizontal annular dispersed gas/liquid flow. 

6.2. Discussion 

We will now reconsider the assumptions on which our Turbulent Diffusion Model is based. The 
average fluid velocity will not be uniform over the whole cross-section of  the tube, as has been 
assumed, but only over about 80% of  the tube diameter. Turbulence will also be inhomogeneous 
close to the walls. This would on the one hand lead to a turbophoresis effect, resulting in an extra 
deposition flux, but on the other hand, especially the smaller particles (T + < 10) can become 
trapped in the boundary layer. The turbulent fluctuations here become too small to support the 
motion of the small particles to the wall. However, it is expected that the high inertia particles that 
we consider effectively see homogeneous turbulence. The local equilibrium assumption is 
questionable, because of the inhomogeneous turbulence. Actually, another transport equation than 
a Fickean diffusion equation is needed which is not restricted to homogeneous turbulence and large 
particle relaxation times. This is the PDF kinetic equation (Reeks 1991, 1992). Furthermore, the 
particle free fall velocity and the particle diffusion coefficient will initially be time-dependent, and 
only when particles have been for some time in the flow field will they become constant. 
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The diffusion free-flight boundary condition is a phenomenological model. It is not clear where 
the starting point of the free-flight process has to be taken and what the value of the free-flight 
velocity at this point is. The velocity distribution at the beginning of the boundary layer is taken 
to be Gaussian. In figure 6 in Swailes and Reeks (1994) it can be seen that the velocity distribution 
close to the wall deviates from a real Gaussian. The p.d.f, function is shifted towards velocities 
directed from the wall. Figure 11 in the same article shows how the particle r.m.s, velocity decreases 
in the direction of the wall, purely as a result of the wall effect. The particle r.m.s, velocity can 
be about 20% lower than that in the centre of the tube. The actual boundary condition is a 
constraint on the velocity, whereas in the Turbulent Diffusion Model there is no information on 
the velocity. A PDF kinetic model is needed to model the boundary conditions in a more natural 
way. In horizontal annular dispersed gas/liquid flow in a tube there is a liquid film at the wall, 
which changes the boundary conditions, and will lead to an enhanced deposition of the small 
particles. Deposition of  large particles is not influenced by the presence of a liquid film. The 
presence of  a (wavy) liquid film will also increase the interfacial friction by 5%-10% (Laurinat 
1982). This will increase the turbulence intensities, and therefore the diffusivities of the particles. 
The volume fraction of the droplets is O(10 3), so that the droplets surely influence the turbulence 
(two way coupling), and turbulence could be reduced. The range of droplet diameters is generally 
between 10 and 1000 ~tm. For particles with a stopping distance of the order of, or larger than, 
the tube diameter (particles larger than 200/~m), the initial entrainment momentum is very 
important. Theoretically, however, little is known about this initial entrainment momentum. The 
volume fraction of droplets smaller than 10 ~m is very small compared to the volume fraction of 
droplets larger than 10/~m. Because they have small Peclet numbers, they will deposit uniformly 
around the circumference of the tube. 

Despite these idealizations, an expression of the form [59] is believed to enlarge the understanding 
of the deposition process in a horizontal annular dispersed gas/liquid flow and to be useful in 
developing new semi-empirical correlations for the deposition flux. Analysis of the deposition flux 
that we have derived showed that at least qualitatively it behaves in a way that is physically 
expected. 
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